filtered (carbon). The filtrate was treated witll 4.2 g . (0.05 mole) of dicyandiamide and heated under reflux for 7 hours. When cool, 5.7 g . ( $38 \%$ ) of crude product was obtained.
A similar run using two equivalents of hydrochloric acid vielded, as the only isolable product, the monohydrochloride of the reactant amine.

3-Hydroxyphenylbiguanide Hydrochloride (from $p$ Aminosalicylic Acid) (Compound 23).-To a clear solution of 15.3 g . ( 0.1 mole ) of $p$-aminosalicylic acid in 34 ml . ( 0.1 mole) of $3 N$ hydrochloric acid and 150 ml . of water, there was added 8.4 g . ( 0.1 mole ) of dicyandiamide. The reaction mixture was heated under reflux for 7 hours. When cool, the clear solution was evaporated to yield a gummy residue which after trituration with acetone, and drying, weighed 17.1 g . Recrystallization (propanol-hexane) yielded $11.4 \mathrm{~g} .(50 \%)$ of product, m.p. $183-185^{\circ}$.

The same biguanide was obtained from $m$-aminophenol, in.p. $182-184^{\circ}$, mixed m.p. $183-185^{\circ}$.

1-Amidino-3-( $m$-chlorophenyl)-urea Hydrochloride.-A solution of 24.8 g . ( 0.1 mole) of $m$-chlorophenylbiguanide hydrochloride in 70 ml . of 3 N hydrochloric acid (total, 3.1 moles of hydrogen chloride) was heated under reflux for 1 hour. When cool, 9.4 g . of insoluble material was separated, which after recrystallization (ethanol-hexane) yielded $6.9 \mathrm{~g} .(28 \%)$ of product, m.p. 207-208 ${ }^{\circ}$ dec.

Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 38.6 ; \mathrm{H}, 4.4 ; \mathrm{N}$, 22.2. Found: C, 38.6; H, 4.1; N, 22.4.

The picrate melted at $224-228^{\circ}$ (ethanol-liexane).
Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClN}_{7} \mathrm{O}_{8}$ : $\mathrm{C}, 38.1 ; \mathrm{H}, 2.7 ; \mathrm{N}$, 22.2. Found: C, 38.1; H, 2.7; N, 22.5.

Tlie filtrate, after separation of the product, was treated with 40 ml . of saturated aqueous sodium nitrate solution, and 18.9 g . ( $47 \%$ ) of the nitrate salt of $m$-chloroaniline separated; recrystallized (acetonitrile), m.p. 191-194 ${ }^{\circ}$ dec.
Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{3}$ : N, 14.7. Found: N , 14.2.

It was further identified as the picrate, m.p. $174-177^{\circ}$ (propanol), which did not depress when admixed with authentic picrate of $m$-chloroaniline, m.p. $175-176^{\circ},{ }^{17}$ mixed m.p. $177-180^{\circ}$.

Alkaline Hydrolysis of Phenylbiguanide.-A solution of 17.7 g . ( 0.1 mole) of phenylbiguanide in 75 ml . of water containing 4.0 g . ( 0.1 niole) of sodium hydroxide was heated under reflux for 0.5 hours. When cool, 14.1 g . ( $80 \%$ ) of crude phenylbiguanide, m.p. $123-130^{\circ}$, separated. On recrystallization from water, 6.2 g . of pure phenylbiguanide was obtained, m.p. 140-142 ${ }^{\circ}$; not depressing when admixed with an authentic sample, m.p. $140-142^{\circ}$; mixed m.p. 140$142^{\circ}$.

Acknowledgment.-The authors are grateful to Dr. G. Ungar and his staff for the reports on the hypoglycemic activity of the compounds.

[^0]Yonkers 1, N. Y.
[Contribution from the Research Laboratories of the U. S. Vitamin Corporation]

# Hypoglycemic Agents. III. ${ }^{1-3} \quad \mathbf{N}^{1}$-Alkyl- and Aralkylbiguanides 

By Seymour L. Shapiro, Vincent A. Parrino and Louis Freedman<br>Received December 19, 1958

A series of $N^{1}$-alkyl- and aralkylbiguanides has been synthesized and examined for hypoglycemic activity in guinea pigs. The relationship between structure and hypoglycemic activity is discussed.

In 1929, Slotta and Tschesche ${ }^{4}$ synthesized a series of biguanides (I) which was examined ${ }^{5}$ for hypoglycemic activity with the conclusion that even the most active compound of that series, $\mathrm{N}^{1}, \mathrm{~N}^{1}$-dimethylbiguanide, was not indicated for use as an insulin substitute in humans. ${ }^{6}$

Recent work from these laboratories ${ }^{2,6}$ described a selected compound, I, $\mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ (DBI), ${ }^{7}$ with outstanding hypoglycemic activity. These findings have been confirmed pharmacologically ${ }^{8}$ and also clinically on a broad spectrum level ${ }^{9}$

## (1) Presented in part at the New York City Meeting of the American

 Chemical Society, September, 1957.(2) S. L. Shapiro, V. A. Parrino and L. Freedman, This Journal, 81, 2220 (1959). Paper I of this series describes the properties of $\beta$ phenethylbiguanide.
(3) S. L. Shapiro, V. A. Parrino, E. Rogow and L. Freedman, ibid., 81, 3725 (1959). Paper II of this series describes the properties of arylbiguanides.
(4) K. H. Slotta and R. Tschesche, Ber., 62B, 1398 (1929).
(5) E. Hesse and G. Taubmann, Arch. exp. Pathol. Phamakol., Nuunyn-Schmiedeberg's, 142, 290 (1929).,
(6) G. Ungar, L. Freedman and S. L. Shapiro, Proc. Soc. Exp. Biol. Med., 95, 190 (1957).
(7) U. S. Vitamin Corp. brand name for $\beta$-phenethylbiguauide hydrochloride.
(8) (a) A. N. Wick, E. R. Larson and G. S. Serif, J. Biol. Chem., 233, 296 (1958) ; (b) R. H. Williams, J. M. Tyberghein, P. M. Hyde and R. L. Nielsen, Metabolism, 6, 311 (1957); (c) S. S. Bergen, J. G. Hilton and W. S. Norton, Proc. Soc. Exp. Biol. Med., 98, 625 (1958).
(9) (a) J. Pomeranze, H. Fuiji and G. T. Mouratoff, ibid., 95, 193 (1957); (b) L. P. Krall and R. Camerini-Davalos, ibid., 95, $34 \overline{5}$ (1957); (c) R. H. Williams, D. C. Tanner and W. D. O'Dell, Digbeles, 7, 87 (1958).
by others. In this paper the synthesis of a variety of alkyl- and aralkylbiguaniides of the type $I$ is described (Table I).


The preparation of the biguanide hydrochlorides ${ }^{10-12}$ was effected by fusion of equimolar mixtures of the amine hydrochloride and dicyandiamide with the reaction temperatures desirably maintained at $130-150^{\circ}$ for $0.5-2$ hours. In a few cases the product was isolated as the nitrate, acetate or the free base (see Table I)

An infrequent side reaction was the fornation of the guanidine, rather than the biguanide under the conditions used (see Table VI). Although biguanides are stronger bases than the aliphatic amines,,$^{2,13}$ the basicity ${ }^{14}$ of the related guanidine may be sufficiently high so that it is the protonated form of the final product. The formed biguanide

[^1]Table I

| Biguanides |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. $\mathrm{R}_{1} \quad \mathrm{R}_{2}=\mathrm{H}$ |  | HX | M.p., <br> ${ }^{\circ} \mathrm{C} . a, b$ | Formula | $\qquad$ Carbon, \% Hydrogen, \% Calcd. Found Calcd. Found |  |  |  | Nitrogen, \% Calcd. Found |  | $L D_{\text {min }}$ | Нуроglycemics activity response s.c. p.o. |  |
| 1 | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$ | HCl | 178-179 ${ }^{\text {ba }}$ | $\mathrm{C}_{5} \mathrm{H}_{22} \mathrm{ClN}_{5}$ | 33.8 | 33.4 | 6.8 | 7.2 |  |  | 300 | $2+$ | $2+$ |
| 2 | $n-\mathrm{C}_{4} \mathrm{H}_{9}-$ | $\mathrm{HNO}_{4}$ | $125-126^{\text {bb }}$ | $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{OB}_{3}$ | 32.7 | 32.2 | 7.3 | 6.8 | 38.2 | 38.0 | 250 | $4+$ | $4+$ |
| 3 | $n-\mathrm{C}_{4} \mathrm{H}_{9}$ | $2 \mathrm{HPic}{ }^{\text {d }}$ | 190-191 ${ }^{\text {bc }}$ | $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 35.1 | 35.0 | 3.4 | 3.8 | 25.0 | 25.2 |  |  |  |
| 4 | $i-\mathrm{C}_{4} \mathrm{H}_{9}-$ | HCl | 222-224 ${ }^{\text {bd }}$ | $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{ClN}_{5}$ | 37.2 | 37.3 | 8.3 | 7.9 | 36.2 | 36.0 | 300 | 4+ |  |
| 5 | ${ }_{6}$ - $\mathrm{C}_{4} \mathrm{H}_{9}$ | HCl | 124-128 ${ }^{\text {be }}$ | $\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{ClN}_{5}$ | 37.2 | 36.6 | 8.3 | 7.7 | 36.2 | 36.0 | 750 | 3+* |  |
| 6 | $n-\mathrm{C}_{5} \mathrm{H}_{11}-$ | HCl | 173-174 ${ }^{\text {bd }}$ | $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{ClN}$ | 40.5 | 40.7 | 8.7 | 8.8 | 33.7 | 33.8 | 150 |  | $4+$ |
| 7 | $n-\mathrm{C}_{5} \mathrm{H}_{11}-$ | HNO | 133-134 ${ }^{\text {be }}$ | $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{4}$ | 35.9 | 36.5 | 7.7 | 7.7 | 35.9 | 36.5 |  |  |  |
| 8 | $i$ i- $\mathrm{C}_{6} \mathrm{H}_{11}-$ | HCl | $188-189^{\text {bd }}$ | $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{ClN}$ | 40.5 | 40.8 | 8.7 | 8.8 | 33.7 | 33.6 |  |  |  |
| 9 | $i-\mathrm{C}_{6} \mathrm{H}_{11}-$ | $\mathrm{HNO}_{3}$ | 134-138 ${ }^{\text {b }}$ d | $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{6} \mathrm{O}_{4}$ | 35.9 | 36.4 | 7.7 | 7.4 | 35.9 | 36.4 | 200 | $3+$ | $3+$ |
| 10 | $i$ - $\mathrm{C}_{6} \mathrm{H}_{11-}$ | $\mathrm{H}_{2} \mathrm{SO} 4$ | 204 dec. ${ }^{\text {b }}$ | $\mathrm{C}_{7} \mathrm{H}_{19} \mathrm{Ns}_{5} \mathrm{O}_{4} \mathrm{~S}$ | 31.1 | 30.8 | 7.1 | 7.3 | 26.0 | 26.8 |  |  |  |
| 11 | i- $\mathrm{C}_{6} \mathrm{H}_{11}-$ | $\mathrm{H}_{2} \mathrm{SO}_{4}{ }^{8}$ | 170-172 ${ }^{\text {bf }}$ | $\mathrm{C}_{14} \mathrm{H}_{88} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{~S}$ | 38.2 | 38.3 | 8.2 | 8.5 | 31.8 | 31.5 |  |  |  |
| 12 | $i-\mathrm{C}_{5} \mathrm{H}_{11}-$ | $2 \mathrm{HPic}{ }^{\text {d }}$ | $193 \mathrm{dec}{ }^{\text {b }}{ }^{\text {c }}$ | $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 36.3 | 36.6 | 3.7 | 3.8 | 24.5 | 24.4 |  |  |  |
| 13 | $\mathrm{CH}_{8} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{5}$ | HCl | 217-218 ${ }^{\text {ba }}$ | $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{ClN}_{4}$ | 40.5 | 41.0 | 8.7 | 8.8 | 33.7 | 34.2 | 100 | $2+$ | $1+$ |
| 14 | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{3}-$ | $2 \mathrm{HPic}{ }^{\text {d }}$ | 172-173 ${ }^{\text {bc }}$ | $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 36.3 | 36.5 | 3.7 | 4.2 | 24.5 | 25.0 |  |  |  |
| 15 | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{3} \mathrm{CH}_{2}-$ | HCl | 220-224 ${ }^{\text {bd }}$ | $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{ClN}_{4}$ | 40.5 | 40.2 | 8.7 | 8.3 | 33.7 | 33.5 | 200 |  | $3+$ |
| 16 | $\mathrm{CH}_{3} \mathrm{CHCH}_{3} \mathrm{CHCH}_{5}-$ | HCl | 220-222 ${ }^{\text {ba }}$ | $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{ClNs}$ | 40.5 | 40.9 | 8.7 | 8.8 | 33.7 | 33.8 | 300 | $2+$ | $1+$ |
| 17 | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3}-$ | HCl | 231-233 ${ }^{\text {bb }}$ | $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{ClN}$ | 40.5 | 40.8 | 8.7 | 8.7 | 33.7 | 33.7 | 200 | $3+$ |  |
| 18 | $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2}-$ | HCl | $235-237{ }^{\text {bb }}$ | $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{ClNs}$ | 40.5 | 40.9 | 8.7 | 9.2 | 33.7 | 33.7 | 300 |  | $2+$ |
| 19 | $n-\mathrm{C}_{6} \mathrm{H}_{15}$ | HCl | 115-127 ${ }^{\text {bh }}$ | $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{ClN}^{-}$ | 43.3 | 43.2 | 9.1 | 9.0 | 31.6 | 32.0 | 75 |  | 0 |
| 20 | $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CHCH}_{7}-$ | HNO | 121-123 ${ }^{\text {b }}$ | $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{5}$ | 38.7 | 38.1 | 8.1 | 7.9 | 33.8 | 34.2 | 75 |  | 0 |
| 21 | $n-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{CHCH}_{5}$ | $2 \mathrm{HPic}{ }^{\text {f }}$ | 158-159 ${ }^{\text {be }}$ | $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{11} \mathrm{O}_{16}$ | 35.4 | 36.1 | 4.3 | 4.3 | 22.7 | 22.8 |  |  |  |
| 22 | $n-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{CHCH}_{8}$ | HCl | 177-179 ${ }^{\text {be }}$ | $\mathrm{CsH}_{18} \mathrm{ClN}$ | 43.6 | 42.9 | 8.3 | 8.0 | 31.9 | 31.8 | 150 |  | 0 |
| 23 | $\mathrm{CH}_{3} \mathrm{CHCH}_{3}\left(\mathrm{CH}_{2}\right)_{5}$ | HCl | 141-145 ${ }^{\text {be }}$ | $\mathrm{C}_{8} \mathrm{H}_{80} \mathrm{ClN}^{-5}$ | 43.3 | 43.3 | 9.1 | 9.1 | 31.5 | 31.5 | 150 |  | $3+$ |
| 24 | $\left(\mathrm{CH}_{3}\right)_{5} \mathrm{CCH}_{2} \mathrm{CH}_{2}-$ | HNOs | 136-137 ${ }^{\text {be }}$ | $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{8}$ | 38.7 | 38.8 | 8.1 | 8.0 | 33.9 | 34.1 | 200 |  | $3+$ |
| 25 | $\mathrm{C}_{6} \mathrm{H}_{11}{ }^{h}$ | HCl | 225-227 ${ }^{\text {c }}$ | $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{5} \mathrm{Cl}$ | 43.7 | 43.4 | 8.3 | 8.2 | 31.9 | 32.2 | 300 | $4+$ | $2+$ |
| 26 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5}$ | HNO | 119-121 ${ }^{\text {be }}$ | $\mathrm{C}_{8} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{3}$ | 41.2 | 40.9 | 8.5 | 8.4 | 32.0 | 31.6 | 100 | 4+* |  |
| 27 | $\mathrm{C}_{7} \mathrm{H}_{15}{ }^{-}$ | HNO, | $160-161^{\text {be }}$ | $\mathrm{C}_{6} \mathrm{H}_{20} \mathrm{~N}_{8} \mathrm{O}_{4}$ | 41.5 | 41.5 | 7.7 | 7.7 | 32.3 | 31.7 | 250 |  | $1+$ |
| 28 | $\mathrm{CH}_{8}\left(\mathrm{CH}_{2}\right)_{7}-$ | HNO: | 126-128 ${ }^{\text {b }}$ d | $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{2}$ | 43.5 | 43.6 | 8.8 | 8.6 | 30.4 | 29.1 | 150 | 3+* |  |
| 29 | $\mathrm{C}_{8} \mathrm{H}_{17}{ }^{\text {i }}$ | HNO: | $165-167^{\text {be }}$ | $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{3}$ | 43.5 | 44.0 | 8.8 | 8.9 | 30.4 | 30.0 | 100 | 1+* |  |
| $30^{k}$ | $\mathrm{C}_{8} \mathrm{H}_{\mathrm{T}^{-}}{ }^{\text {j }}$ | $2 \mathrm{HPic}{ }^{\text {d }}$ | $212-213^{\text {bc }}$ | $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 39.4 | 38.8 | 4.4 | 4.3 | 22.9 | 22.9 |  |  |  |
| 33 | $\mathrm{CH}_{8}\left(\mathrm{CH}_{2}\right)^{-}$ | HNOs | 85-105 ${ }^{\text {b }}$ | $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{4}$ | 47.4 | 47.5 | 9.3 | 8.8 | 27.6 | 27.5 | 300 | 0* |  |
| 34 | $d$ - $\mathrm{C}_{10} \mathrm{H}_{17}{ }^{\text {l }}$ | HCl | 223-224 ${ }^{\text {ba }}$ | $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{ClNs}$ | 52.6 | 52.7 | 8.8 | 8.8 | 25.6 | 25.8 | 50 | 0* |  |
| 35 | di. $\mathrm{C}_{10} \mathrm{H}_{17}{ }^{\text {l }}$ | HCl | $225-227^{\text {bg }}$ | $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Ns} \mathrm{Cl}^{2}$ | 52.6 | 52.6 | 8.8 | 8.6 | 25.6 | 25.3 | 100 | 0 |  |
| 38 | $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{CH}_{2}-$ | HCl | 196-197 ${ }^{\text {be }}$ | $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{ClN}_{5}$ | 47.5 | 47.6 | 6.2 | 6.0 | 30.8 | 30.9 | 150 |  | $3+$ |
| 41 | $3-\mathrm{CH}_{6} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2-}$ | HCl | 172-173 ${ }^{\text {bg }}$ | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}^{-}$ | 49.7 | 50.0 | 6.7 | 6.9 | 29.0 | 29.2 | 150 |  |  |
| 42 | $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | HCl | 168-170 ${ }^{\text {bo }}$ | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}$ | 49.7 | 49.5 | 6.7 | 6.6 | 29.0 | 29.0 | 200 |  | 0 |
| 43 | $4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ |  | 118-121 ${ }^{\text {bc }}$ | $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClN}$ | 47.9 | 48.0 | 5.4 | 5.2 |  |  |  |  |  |
| 44 | $4-\mathrm{ClC}_{8} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | HNO: | 137-138 ${ }^{\text {be }}$ | $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{ClN}_{5} \mathrm{O}_{3}$ | 37.4 | 37.6 | 4.5 | 4.3 | 29.1 | 28.7 | 150 | 4+ | $4+$ |
| 45 | $4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $2 \mathrm{HPic}{ }^{\text {d }}$ | 163-164 ${ }^{\text {be }}$ | $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClN}_{11} \mathrm{O}_{14}$ | 36.9 | 37.4 | 2.7 | 2.9 | 22.5 | 22.6 |  |  |  |
| 46 | 3,4- $\mathrm{CiClC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$ | $\mathrm{HNO}_{3}$ | 139-142 ${ }^{\text {b }}$ | $\mathrm{C}_{2} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{3}$ | 33.5 | 33.9 | 3.7 | 4.0 | 26.0 | 25.7 | 150 |  | $1+$ |
| 48 | $3-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{HNO}_{3}$ | 135-137 ${ }^{\text {b }}$ | $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{BrN}_{5} \mathrm{O}_{7}$ | 32.5 | 32.4 | 3.9 | 3.9 | 25.2 | 24.7 | 200 |  | $3+$ |
| 49 | $4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ |  | $132-134^{\text {bs }}$ | $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Ns}_{5} \mathrm{O}$ | 54.3 | 54.2 | 6.8 | 6.7 | 31.7 | 32.0 | 150 |  | $2+$ |
| 50 | $4-\mathrm{CH}_{8} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $2 \mathrm{HPic}{ }^{\text {d }}$ | 174-175 ${ }^{\text {be }}$ | $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{11} \mathrm{O}_{15}$ | 38.9 | 38.6 | 3.1 | 3.2 | 22.7 | 22.6 |  |  |  |
| 51 | $2-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{HNO}_{3}$ | 138-140 ${ }^{\text {be }}$ | $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{4}$ | 44.3 | 44.7 | 6.1 | 6.0 | 28.2 | 28.0 | 75 |  | $1+$ |
| 52 | $2-\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | 2HPic. ${ }^{\text {d }}$ | $158-160^{\text {be }}$ | $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{11} \mathrm{O}_{15}$ | 39.8 | 39.9 | 3.3 | 3.1 | 22.2 | 21.9 |  |  |  |
| 53 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCH}_{8}-$ | HCl | 187-189 ${ }^{\text {be }}$ | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}_{5}$ | 49.7 | 49.6 | 6.7 | 6.6 | 29.0 | 29.2 | 100 | 0 |  |
| 54 | $4-\mathrm{Cl}-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{CHCH}_{8}$ | HCl | 216-217 ${ }^{\text {ba }}$ | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{5}$ | 43.5 | 43.5 | 5.5 | 5.6 | 25.4 | 25.4 | 100 | 0 |  |
| 55 | $\left(\mathrm{C}_{8} \mathrm{H}_{6}\right)_{2} \mathrm{CH}-$ | HCl | 212-213 ${ }^{\text {bd }}$ | $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClN} \mathrm{N}_{5}$ | 59.3 | 59.3 | 6.0 | 6.2 | 23.0 | 23.2 | 60 | 0 |  |
| 56 | $\left(\mathrm{C}_{6} \mathrm{H}_{8}\right)_{2} \mathrm{CH}-$ | $2 \mathrm{HPic}{ }^{\text {d }}$ | $167-168^{\text {ba }}$ | $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 44.7 | 44.9 | 3.2 | 3.6 | 21.2 | 21.1 |  |  |  |
| 57 | $\mathrm{FurCH}_{2-}{ }^{-m}$ | HCl | $161-164^{\text {D }}$ d | $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{O}$ | 38.6 | 38.9 | 5.6 | 5.7 | 32.2 | 32.2 | 300 | 3+* |  |
| 58 | ThpCHz ${ }^{-n}$ | HCl | $166-168^{\text {bd }}$ | $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{~S}$ | 36.0 | 36.4 | 5.2 | 5.5 | 30.0 | 30.0 | 250 | $3+*$ |  |
| 59 | $\beta-\mathrm{NpCH}_{2}{ }^{-}{ }^{\circ}$ | $\mathrm{HNO}_{2}$ | 174-178 ${ }^{\text {be }}$ | $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{3}$ | 51.0 | 51.3 | 5.9 | 5.4 | 27.4 | 27.0 | 200 |  | 0 |
| 60 | $\beta-\mathrm{NpCH}_{2}{ }^{\circ}$ | $2 \mathrm{HPic}{ }^{\text {d }}$ | $166-168^{\text {be }}$ | $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{11} \mathrm{O}_{14}$ |  |  |  |  | 22.0 | 21.7 |  |  |  |
| 61 | $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{CH}_{2} \mathrm{CH}_{2}-p$ | HCl | $175-178^{\text {bd }}$ | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}_{5}$ | 49.7 | 49.7 | 6.7 | 6.7 | 29.0 | 29.4 | 200 | $4+$ | 4+ |
| 63 | 3,4-diCH8 $\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | HCl | 190-192 ${ }^{\text {bb }}$ | $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{ClN}_{5} \mathrm{O}_{2}$ | 47.8 | 47.8 | 6.7 | 6.9 | 23.2 | 23.2 | 200 | 0 | 0 |
| 64 | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2} \mathrm{CHCH}_{8}$ | $\mathrm{HNO}_{8}$ | $146-148^{\text {be }}$ | $\mathrm{C}_{11} \mathrm{H}_{18}: \mathrm{N}_{5} \mathrm{O}$ | 46.8 | 46.7 | 6.4 | 6.5 | 29.8 | 29.8 | 300 | $4+$ | $2+$ |
| 65 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CH}_{2}-$ | HNO: | 118-121 ${ }^{\text {be }}$ | $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{8}$ | 48.6 | 48.7 | 6.8 | 6.8 | 28.4 | 28.0 | 100 |  | $1+$ |
| 66 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCHC}_{6} \mathrm{H}_{5}-$ | $\mathrm{HNO}_{3}$ | $165-167^{\text {be }}$ | $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3}$ | 55.8 | 55.6 | 5.9 | 5.9 | 24.4 | 23.8 | 300 | 1+* |  |
| 67 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{CH}_{2}-$ | $\mathrm{HNO}_{3}$ | 154-157 ${ }^{\text {bb }}$ | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{4}$ | 42.3 | 42.2 | 5.7 | 5.8 | 29.6 | 30.0 | 200 |  | 0 |
| 68 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCHCH}_{2} \mathrm{CH}_{2}-$ | HCl | $157-159^{6 e}$ | $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN}_{5} \mathrm{O}$ | 48.6 | 48.4 | 6.7 | 6.7 | 25.8 | 25.9 | 250 |  | 0 |
| 72 | $\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{CH}_{2}\right)_{8}-$ | $\mathrm{H}_{\mathrm{NO}}^{3}$ | $109-115^{\text {be }}$ | $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{3}$ | 46.8 | 47.1 | 6.4 | 6.1 |  |  | 200 |  | $1+$ |
| 73 | $\mathrm{C}_{5} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{5}$ | 2HPic. ${ }^{\text {d }}$ | 170-171 ${ }^{\text {be }}$ | $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 40.8 | 41.3 | 3.4 | 3.6 | 22.7 | 22.8 |  |  |  |
| 74 | $\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}$ | HNO: | 124-126 ${ }^{\text {be }}$ | $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{8} \mathrm{O}_{3}$ | 48.6 | 48.7 | 6.8 | 6.6 | 28.4 | 27.9 | 100 |  | 0 |
|  |  |  |  | Table IA |  |  |  |  |  |  |  |  |  |
| No. | $\mathrm{R}_{1}$ |  | HX | ${ }^{\circ} \mathrm{C} \cdot \mathrm{p} \cdot, \vec{b}$, Formula |  | $\begin{aligned} & \text { Carbo } \\ & \text { Calcd. Fo } \end{aligned}$ | on, ound C | nalyses droge $\%$ cd. Fo | $\begin{aligned} & \mathrm{c} \\ & \text { and } \mathrm{Ca} \end{aligned}$ |  | d $\mathrm{LD} \mathrm{min}_{\text {m }}$ |  | pomic vity onse po. |
| 75 | $\mathrm{CH}_{8}{ }^{-} \mathrm{CH}_{8}$ |  | HCl 21 | $8-220^{\text {ba }} \quad \mathrm{C}_{4} \mathrm{H}_{12} \mathrm{ClN}$ |  | $29.0 \quad 2$ | 29.2 |  |  |  | 400 | 3+* | 0 |
| 76 | $\mathrm{C}_{2} \mathrm{H}_{8}-$ |  | $\mathrm{HNO}_{3}$ | 95-104 $4^{\text {be }} \quad \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{3}$ |  | 29.12 | 29.1 | 8 6 |  | 40.5 | 400 |  |  |
| 77 | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2-}{ }^{-} \quad \mathrm{CH}_{2} \mathrm{C}$ | $\mathrm{CH}_{2}-$ | $\mathrm{HCl} \quad 1$ | 44-146 ${ }^{\text {bs }} \quad \mathrm{CsH}_{15} \mathrm{ClN}$ |  | 44.1 | 44.3 | 47. | 23 | 232.4 | 4500 | $3+$ | $1+$ |

Table IA (continued)

| No. | $\mathrm{R}_{1}$ | R: | HX | $\stackrel{\text { M.p. }}{\circ}$ | Formula | Carbon Calcd. F | $\% \mathrm{H}$ und C | Analy drog led. | ses ${ }^{c}$ <br> n, ound | Nitro Calcd. | n, \% ound | $L_{\text {min }}$ | Hypoglycemic ${ }^{3}$ activity response |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 78 | ${ }_{4}-\mathrm{C}_{3} \mathrm{H}_{7}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | $\mathrm{HNO}_{3}$ | $129-131^{\text {be }}$ | $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{3}$ | 35.9 | 35.9 | 7.7 | 7.8 | 35.9 | 36.1 | 350 |  | 0 |
| 79 | $n-\mathrm{C}_{4} \mathrm{H}_{9}-$ | $\mathrm{CH}_{3}-$ | HCl | $181-183^{\text {bd }}$ | $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{ClN}_{5}$ | 40.5 | 40.6 | 8.7 | 8.8 | 33.7 | 33.8 | 200 | $4+$ | $3+$ |
| 80 | $n-\mathrm{C}_{4} \mathrm{H}_{3}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}$ | $2 \mathrm{HPic}{ }^{\text {d }}$ | $166-169^{\text {bd }}$ | $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 37.3 | 37.3 | 3.9 | 3.9 | 23.9 | 23.7 |  |  |  |
| 81 | $i-\mathrm{C}_{4} \mathrm{H}_{9}-$ | $\mathrm{CH}_{3}{ }^{-}$ | HCl | 182-184 ${ }^{\text {ba }}$ | $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{ClN}_{5}$ | 40.5 | 41.0 | 8.7 | 8.8 | 33.7 | 33.7 | 300 | $3+$ | $2+$ |
| 82 | $i-\mathrm{C}_{4} \mathrm{H}_{8}$ | $\mathrm{CH}_{3}$ | 2HPic. ${ }^{\text {d }}$ | $195-196{ }^{\text {bc }}$ | $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 36.3 | 36.4 | 3.7 | 3.9 |  |  |  |  |  |
| 83 | $i-\mathrm{C}_{4} \mathrm{H}_{8}-$ | $i-\mathrm{C}_{4} \mathrm{H}_{8}-$ | 2HPic. ${ }^{\text {d }}$ | 178-180 ${ }^{\text {bb }}$ | $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 39.3 | 39.5 | 4.4 | 4.6 | 22.9 | 22.6 |  |  |  |
| 84 | $n-\mathrm{C}_{5} \mathrm{H}_{11}-$ | $\mathrm{CH}_{8}-$ | HCl | $132-134^{\text {be }}$ | $\mathrm{C}_{3} \mathrm{H}_{20} \mathrm{ClN}_{5}$ | 43.3 | 43.3 | 9.1 | 9.0 | 31.6 | 31.6 | 100 | $3+$ | $2+$ |
| 85 | $i$ - $\mathrm{C}_{5} \mathrm{H}_{11}-$ | $\mathrm{CH}^{-}$ | HCl | 133-135 ${ }^{\text {be }}$ | $\mathrm{CsH}_{20} \mathrm{ClN} 5$ | 43.3 | 43.5 | 9.1 | 8.8 | 31.6 | 31.6 | 200 | $2+$ |  |
| 88 | $\mathrm{C}_{6} \mathrm{H}_{11}{ }^{h}$ | $\mathrm{CH}_{3}-$ | 2 HPic. $^{\text {d }}$ | $212-214^{\text {be }}$ | $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 38.5 | 38.8 | 3.8 | 3.7 | 23.5 | 23.9 |  |  |  |
| 90 | -(CH |  | HCl | 205-207 ${ }^{\text {bb }}$ | $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{ClN}_{5}$ | 40.9 | 40.8 | 7.8 | 7.5 | 34.1 | 33.8 | 200 | 4+* | $3+$ |
| 91 | $-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{C}$ | $\mathrm{HCH}_{3}$ | 2HPic. ${ }^{\text {d }}$ | 203-204 ${ }^{\text {bf }}$ | $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 37.5 | 37.5 | 3.6 | 3.7 | 24.0 | 24.4 |  |  |  |
| 92 | -( CH |  | HCl | 203-207 ${ }^{\text {bd }}$ | $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{ClN}_{5}$ | 43.7 | 43.5 | 8.3 | 7.9 | 31.9 | 32.0 | 300 | $4+$ |  |
| 93 | $-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$ | $\left(\mathrm{CH}_{2}\right)_{2}-$ | HCl | 189-192 ${ }^{\text {b }}$ | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ClN}_{5} \mathrm{O}$ | 34.7 | 35.3 | 6.8 | 6.9 | 33.7 | 33.8 | $>1000$ | $2+$ |  |
| 94 | $-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$ | $\left(\mathrm{CH}_{2}\right)_{2}-$ | 2HPic. ${ }^{\text {d }}$ | $223-225^{\text {bc }}$ | $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{11} \mathrm{O}_{5}$ | 34.4 | 34.9 | 3.0 | 3.2 | 24.5 | 24.8 |  |  |  |
| 96 | $-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}^{-\mathrm{CH}}$ | $\mathrm{H}_{3}\left(\mathrm{CH}_{2}\right)_{2}-$ | $2 \mathrm{HPic} .^{\text {d }}$ | $245 \mathrm{dec}{ }^{\text {bc }}$ | $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{12} \mathrm{O}_{14}$ | 35.5 | 35.7 | 3.5 | 3.4 | 26.2 | 26.0 |  |  |  |
| 97 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{3}{ }^{-}$ | HCl | 201-203 ${ }^{\text {bb }}$ | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}_{5}$ | 49.7 | 49.6 | 6.7 | 6.7 | 29.0 | 28.9 | 300 | $4+$ | $2+$ |
| 98 | $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{3}{ }^{-}$ | HAc | $178-180^{\text {bd }}$ | $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{6} \mathrm{O}_{2}$ | 54.3 | 54.1 | 7.2 | 7.1 | 26.4 | 26.0 |  |  |  |
| 99 | $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{8}{ }^{-}$ | 2HPic. ${ }^{\text {d }}$ | 189-191 ${ }^{\text {be }}$ | $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 39.8 | 40.0 | 3.2 | 3.2 | 23.2 | 23.2 |  |  |  |
| 100 | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{6}-$ | HCl | 193-195 ${ }^{\text {be }}$ | $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN}_{5}$ | 52.1 | 52.0 | 6.4 | 7.0 | 27.6 | 27.2 | 100 |  | $1+$ |
| 101 | $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$ | HCl | $180-181^{\text {bd }}$ | $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}$ | 53.8 | 53.9 | 6.8 | 6.8 | 26.2 | 26.2 | 75 |  | $1+$ |
| 102 | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2}-$ | $n-\mathrm{C}_{2} \mathrm{H}_{7}-$ | HCl | 188-190 ${ }^{\text {b }}$ d | $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClN} \mathrm{N}_{6}$ | 53.4 | 53.6 | 7.5 | 7.7 | 26.0 | 26.0 | 75 |  | 0 |
| 103 | $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{CH}_{2}-$ | i- $\mathrm{C}_{8} \mathrm{H}_{T}$ | HCl | $169-187^{\text {bd }}$ | $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{ClN}_{5}$ | 53.4 | 53.5 | 7.5 | 7.7 | 26.0 | 25.8 | 100 |  | $1+$ |
| 104 | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2}-$ | $i-\mathrm{C}_{3} \mathrm{H}_{7}$ | 2HPic. ${ }^{\text {d }}$ | 165-168 ${ }^{\text {be }}$ | $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{11} \mathrm{O}_{14}$ |  |  |  |  | 22.3 | 22.0 |  |  |  |
| 105 | $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CH}_{2}-$ | $\mathrm{C}_{6} \mathrm{H}_{5}-$ |  | $76-79^{\text {b }}$ | $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}^{q}$ | 63.1 | 63.1 | 6.7 | 6.9 | 24.6 | 24.1 | 150 |  | $1+$ |
| 106 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-$ | $\mathrm{C}_{8} \mathrm{H}_{5}-$ | HPic. ${ }^{\text {d }}$ | $173-174^{b a}$ | $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{8}$ | 47.5 | 47.3 | 4.5 | 3.7 | 21.1 | 21.4 |  |  |  |
| 107 | $2 . \mathrm{ClC}_{8} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{8}-$ | $\mathrm{HNO}_{3}$ | $145-146^{\text {bg }}$ | $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClN}_{5} \mathrm{O}_{3}$ | 39.7 | 39.6 | 5.0 | 4.8 | 27.8 | 28.0 | 200 |  | $2+$ |
| 108 | $2 . \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{3}$ | 2HPic. ${ }^{\text {d }}$ | 204-205 ${ }^{\text {be }}$ | $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClN}_{11} \mathrm{O}_{14}$ | 47.9 | 37.6 | 2.9 | 2.6 | -22.1 | 21.8 |  |  |  |
| 109 | $2 . \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | HCl | 188-190 ${ }^{\text {ba }}$ | $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{5}$ | 45.5 | 45.8 | 5.9 | 5.8 | 24.1 | 24.0 | 100 |  | 0 |
| 110 | $2 . \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2-}$ | HCl | $166-167^{\text {be }}$ | $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{6}$ | 47.7 | 48.2 | 5.7 | 5.8 | 23.2 | 22.8 | 100 |  | $1+$ |
| 111 | $2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $n-\mathrm{C}_{3} \mathrm{H}_{7}$ | HCl | $174-176^{\text {be }}$ | $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{5}$ | 47.4 | 47.7 | 6.3 | 5.9 | 23.0 | 23.4 | 90 |  | 0 |
| 112 | $2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $i-\mathrm{C}_{6} \mathrm{H}_{7}-$ | HCl | 190-191 ${ }^{\text {be }}$ | $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{5}$ | 47.4 | 47.2 | 6.3 | 6.3 | 23.0 | 23.0 | 100 |  | $1+$ |
| 113 | $2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $i-\mathrm{C}_{3} \mathrm{H}_{7}$ | $2 \mathrm{HPic} .{ }^{\text {d }}$ | $154-156{ }^{\text {be }}$ | $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClN}_{11} \mathrm{O}_{14}$ | 39.7 | 40.4 | 3.3 | 3.6 | 21.2 | 21.0 |  |  |  |
| 114 | $4 . \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{8}-$ | HCl | 227-228 ${ }^{\text {bb }}$ | $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{6}$ | 43.5 | 43.9 | 5.5 | 5.5 | 25.4 | 25.2 | 150 |  | $1+$ |
| 115 | $4-\mathrm{ClC}_{3} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | HCl | 208-209 ${ }^{\text {bg }}$ | $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{5}$ | 45.5 | 45.3 | 5.9 | 5.6 | 24.1 | 23.8 | 125 |  | 0 |
| 116 | 4. $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{0}-$ | $2 \mathrm{HPic} .{ }^{\text {d }}$ | $149-150^{\text {bb }}$ | $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{11} \mathrm{O}_{14}$ | 4 38.8 | 38.9 | 3.1 | 3.1 | 21.6 | 21.6 |  |  |  |
| 117 | $4 . \mathrm{ClC}_{3} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$ | HCl | 188-189 ${ }^{\text {bd }}$ | $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{5}$ | 47.7 | 48.0 | 5.7 | 5.6 | 23.2 | 23.2 | 125 |  | 0 |
| 118 | $4 . \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $n-\mathrm{C}_{3} \mathrm{H}_{7-}$ | HCl | 195-196 ${ }^{\text {bb }}$ | $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{5}$ | 47.4 | 47.8 | 6.3 | 6.5 | 23.0 | 23.3 | 100 |  | $1+$ |
| 119 | $4 . \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $i-\mathrm{C}_{3} \mathrm{H}_{7}-$ | HCl | 198-199 ${ }^{\text {be }}$ | $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{5}$ | 47.4 | 47.4 | 6.3 | 6.4 | 23.0 | 23.1 | 75 |  | $1+$ |
| 120 | $4-\mathrm{ClC}_{8} \mathrm{H}_{6} \mathrm{CH}_{2}-$ | $n-\mathrm{C}_{4} \mathrm{H}_{9}$ | HCl | $182-184^{\text {bc }}$ | $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{Ns}_{5}$ | 49.1 | 49.2 | 6.7 | 6.5 | 22.0 | 22.1 | 100 |  | 0 |
| 121 | 2,4- $\mathrm{diClCs}_{8} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | HCl | 214-216 ${ }^{\text {bb }}$ | $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{~N}_{5}$ | 40.7 | 41.0 | 5.0 | 4.9 | 21.6 | 21.6 | 75 |  | 0 |
| 122 | $2,4-\mathrm{CiClC}_{8} \mathrm{H}_{3} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$ | HCl | 186-188 ${ }^{\text {ba }}$ | $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{~N}_{5}$ | 42.8 | 42.9 | 4.8 | 4.5 | 20.8 | 20.9 | 100 |  | $1+$ |
| 123 | 2,4- $\mathrm{diClC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$ | $n-\mathrm{C}_{3} \mathrm{H}_{7}$ | HCl | 192-194 ${ }^{\text {bb }}$ | $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}^{\text {\% }}$ | 42.6 | 43.0 | 5.4 | 5.2 | 20.7 | 21.0 | 75 |  | 0 |
| 124 | 2,4- $\mathrm{CiClC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$ | i. $\mathrm{C}_{3} \mathrm{H}_{5}$ | HCl | $186-188^{\text {bc }}$ | $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}_{5}$ | 42.6 | 42.2 | 5.4 | 5.3 | 20.7 | 21.2 | 50 |  | $1+$ |
| 125 | $3,4-\mathrm{diClC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{5}-$ | HCl | 193-195 ${ }^{\text {bb }}$ | $\mathrm{C}_{10} \mathrm{H}_{44} \mathrm{Cl}_{8} \mathrm{~N}_{5}$ | 38.7 | 38.8 | 4.5 | 5.0 | 22.6 | 22.9 | 100 |  | $2+$ |
| 126 | 3,4- $\mathrm{diClC}_{8} \mathrm{H}_{3} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | HCl | 206-207 ${ }^{\text {bg }}$ | $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{Ns}_{5}$ | 40.7 | 41.2 | 5.0 | 5.0 | 21.6 | 21.9 | 150 |  | $2+$ |
| 127 | 3,4- $\mathrm{diClC}_{5} \mathrm{H}_{3} \mathrm{CH}_{2}$. | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$ | HCl | $186-188^{6 b}$ | $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{8} \mathrm{~N}_{5}$ | 42.8 | 42.2 | 4.8 | 4.5 | 20.8 | 20.9 | 100 |  | $1+$ |
| 128 | 3,4- $\mathrm{diClC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$ | $n-\mathrm{C}_{3} \mathrm{H}_{5}-$ | HCl | 201-202 ${ }^{\text {bb }}$ | $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}_{5}$ | 42.6 | 43.3 | 5.4 | 5.6 | 20.7 | 20.7 | 75 |  | 0 |
| 129 | $3,4-\mathrm{diClC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$ | $n-\mathrm{C}_{8} \mathrm{H}_{5}-$ | 2HPic, ${ }^{\text {d }}$ | 147-149 ${ }^{\text {ba }}$ | $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 1437.9 | 38.4 | 3.1 | 3.3 | 20.3 | 19.9 |  |  |  |
| 130 | $3 \cdot \mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH} 5-$ | $\mathrm{CH}_{8}-$ | HCl | $135-137^{6 e}$ | $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BrClN}$ | 37.5 | 37.9 | 4.7 | 4.6 | 21.8 | 22.0 | 150 |  | $1+$ |
| 131 | $3-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | HCl | 222-224 ${ }^{\text {bb }}$ | $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BrClN}_{5}$ | 39.5 | 39.2 | 5.1 | 5.2 | 20.9 | 21.1 | 8,5 |  | 0 |
| 132 | $4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | HCl | 206-208 ${ }^{\text {be }}$ | $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BrClN}$ | 39.5 | 39.4 | 5.1 | 5.0 | 20.9 | 21.4 | 100 |  | $1+$ |
| 133 | $4-\mathrm{BrC}_{5} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$ | HCl | $184-186^{\text {ba }}$ | $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrClN}$ | 41.6 | 41.6 | 4.9 | 4.5 | 20.2 | 20.4 | 150 |  | 0 |
| 134 | 4- $\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $i-\mathrm{C}_{3} \mathrm{H}_{5}-$ | $\mathrm{HNO}_{3}$ | 178-180 ${ }^{\text {be }}$ | $\mathrm{C}_{12} \mathrm{H}_{1} 9 \mathrm{BrN}_{3} \mathrm{O}_{3}$ | 38.4 | 38.4 | 5.1 | 4.9 | 22.4 | 22.1 | 100 |  | $1+$ |
| 135 | $4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $n-\mathrm{C}_{4} \mathrm{H}_{9}-$ | HCl | $173-176^{\text {ba }}$ | $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrCl} \mathrm{N}_{6}$ | 43.0 | 43.2 | 5.8 | 5.6 | 19.3 | 18.9 | 75 |  | 0 |
| 136 | $2-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{3}$ | $\mathrm{HNO}_{3}$ | 154-155 ${ }^{\text {be }}$ | $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{8} \mathrm{O}_{4}$ | 46.1 | 45.9 | 6.5 | 6.2 | 26.9 | 26.8 | 50 |  | $1+$ |
| 137 | $2-\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{8}-$ | $2 \mathrm{HPic}{ }^{\text {d }}$ | $159-160^{\text {be }}$ | $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{11} \mathrm{O}_{15}$ | 40.7 | 40.9 | 3.6 | 3.8 | 21.8 | 22.1 |  |  |  |
| 138 | $4-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{3}-$ | HCl | 180-182 ${ }^{\text {ba }}$ | $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClN}_{5} \mathrm{O}$ | 50.4 | 50.6 | 7.1 | 7.2 | 24.5 | 24.8 | 100 |  | $2+$ |
| 139 | FurCH2- ${ }^{m}$ | $\mathrm{CH}_{3}$ | HCl | 227-230 ${ }^{\text {bd }}$ | $\mathrm{C}_{8} \mathrm{H}_{44} \mathrm{ClN}_{6} \mathrm{O}$ | 41.5 | 41.7 | 6.1 | 6.0 | 30.2 | 30.1 | 300 | $3+*$ |  |
| 140 | FurCH2- ${ }^{m}$ | $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$ | HCl | 149-152 ${ }^{\text {be }}$ | $\mathrm{C}_{2} \mathrm{H}_{16} \mathrm{ClN}_{5} \mathrm{O}$ | 44.0 | 44.2 | 6.6 | 6.1 | 28.5 | 28.6 | 150 | 0* |  |
| 141 | ThpCH2- ${ }^{n}$ | $\mathrm{CH}_{8}$ | HCl | $197-200^{\text {b }}$ | $\mathrm{C}_{3} \mathrm{H}_{14} \mathrm{ClN} \mathrm{N}_{5}$ | 38.8 | 39.1 | 5.7 | 5.7 | 28.3 | 28.6 | 350 | 0 |  |
| 142 | ThpCH2-n | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | HCl | 186-188 ${ }^{\text {bd }}$ | $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{ClN}_{6} \mathrm{~S}$ | 41.3 | 41.2 | 6.2 | 6.1 | 26.7 | 26.8 | 300 | 0 |  |
| 143 | $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{3}-$ | HCl | $161-164{ }^{\text {bd }}$ | $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN}_{8}$ | 51.7 | 51.4 | 7.1 | 6.8 | 27.4 | 27.0 | 50 | $1+$ |  |
| 144 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | HCl | $166-168^{\text {be }}$ | $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClN}_{5}$ | 53.4 | 53.6 | 7.5 | 8.0 | 26.0 | 26.4 | 150 |  | 0 |
| 145 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | 2HPic. ${ }^{\text {d }}$ | $158-160^{\text {bc }}$ | $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{11} \mathrm{O}_{14}$ |  |  |  |  | 22.3 | 22.1 |  |  |  |
| 146 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$ | HCl | 143-145 ${ }^{\text {bt }}$ | $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClN}_{5}$ | 55.0 | 55.1 | 7.3 | 7.0 | 24.8 | 24.6 | 75 |  | $1+$ |
| 147 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | ${ }_{n-\mathrm{C}_{3} \mathrm{H}_{7}-10}$ | HCl | $12,5-127^{6 d}$ | $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{ClN}$ | 55.0 | 55.0 | 7.8 | 7.9 | 24.7 | 24.6 | 100 |  | 0 |
| 148 | $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | $i-\mathrm{C}_{3} \mathrm{H}^{-}$ | 2HPic. ${ }^{\text {d }}$ | $176-177^{\text {be }}$ | $\mathrm{C}_{26} \mathrm{H}_{2} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 42.5 | 42.9 | 3.9 | 3.8 | 21.8 | 21.8 |  |  |  |
| 149 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHCH}_{5}$ | $\mathrm{CH}_{8}{ }^{-}$ |  | $80^{\text {bc }}$ | $\mathrm{C}_{72} \mathrm{H}_{18} \mathrm{~N}_{5}{ }^{\text {G4 }}$ | ,55.4 | 55.4 | 8. | 8.5 | 26.9 | 27.0 | 100 | 0 |  |
| 150 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHCH}_{3}-$ | $\mathrm{CH}_{3}$ | 2HPic. ${ }^{\text {d }}$ | $91-95^{b c}$ | $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{11} \mathrm{O}_{14}$ | 41.7 | 41.9 | 3.6 | 3.9 |  |  |  |  |  |
| 153 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCHCH}_{3} \mathrm{CH}_{2}$ | $\mathrm{CH}_{3}-$ | HCl | $148-152^{\text {be }}$ | $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClN}_{5} \mathrm{O}$ | 50.4 | 50.8 | 7.1 | 7.1 | 24.5 | 24.6 | 150 |  | $1+$ |
| 154 | $\cdots-\mathrm{CH} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}$ | $\mathrm{H}_{2} \mathrm{CH}_{2}{ }^{-}$ | HCl | 220-223 ${ }^{66}$ | $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClN} \mathrm{N}_{5}$ | 51.8 | 51.9 | 0.3 | 6.5 | 27.6 | 27.5 | 150 | $1+$ |  |

${ }^{a}$ Melting points are not corrected. ${ }^{b}$ Recrystallizing solvent: ${ }^{b a}$ propanol, ${ }^{b b}$ ethanol, ${ }^{b c}$ water, ${ }^{b d}$ isopropyl alcohol, ${ }^{b e}$ acetonitrile, ${ }^{b \rho}$ methanol, ${ }^{b g}$ ethanol-hexane, ${ }^{b h}$ methanol-ether, ${ }^{b i}$ propanol-hexane, ${ }^{b j}$ ethyl acetate-hexane, ${ }^{b k}$ ethyl acetate, ${ }^{b l}$ isopropyl alcohol-hexane, ${ }^{b m}$ methanol-water, ${ }^{b n}$ benzene, ${ }^{b o}$ xylene. ${ }^{c}$ Analyses by Weiler and Strauss, Oxford, England. ${ }^{a}$ HPic. = picric acid. The picrates isolated usually indicated two moles of picric acid per mole of biguanide and this has beell shown as 2 HPic . throughout the table wherever applicable. ${ }^{\circ}$ Dibasic sulfate. $f$ Isolated as dihydrate. $a \mathrm{R}=$

1-methyl-pentene-4. ${ }^{h}$ Cyclohexyl. 'Cycloheptyl. ${ }^{i} t$ Octyl. ${ }^{k}$ Numerical sequence not retained. ${ }^{\text {Bornyl}}$. ${ }^{m}$ Fur $=2$-furyl. ${ }^{n}$ Thp $=2$-thiophene. ${ }^{\circ} \mathrm{Np}=$ naphthyl. ${ }^{p}$ A variety of other salts of this biguanide are reported in ref.2. ${ }^{q}$ Crystallizes as monohydrate; ${ }^{q a} 1.5$ water. ${ }^{r}$ Compound derived from tetrahydroisoquinoline as reactant amine. ${ }^{\text {s }}$ The hypoglycemic activity was determined in normal guinea pigs by established methods and has been outlined in ref. 6. In screening the compounds in the course of the study, oral or subcutaneous testing was used. Usually, a subcutaneous test was run at one-fifth of the $L D_{\min }$ (minimum lethal dose subcutaneous in mice) and when otherwise established at one-third of the $L^{2} D_{\text {min }}$, the response has been shown with an asterisk. The oral activity was established at one-third of the $L D_{\text {min }}$. In the table the numerical values shown have been classified in terms of percentage reduction of blood sugar from the normal blood sugar of the animal; $0=$ less than $10 \%$ reduction; $1+=10-20 \%$ reduction; $2+=21-35 \%$ reduction; $3+=36-60 \%$ reduction and $4+=$ over $60 \%$ reduction.
could conceivably react through its intermolecular hydrogen-bonded form ${ }^{2}$ through hydrogen transfer to yield the guanidine and cyanamide as shown in Scheme I. ${ }^{12}$


Pharmacology.-The relationship of structure to hypoglycemic activity is discussed on the basis of screening experiments in the guinea pig. ${ }^{15}$

In the series $\mathrm{R}_{1}=$ alkyl, the activity reaches a peak with $n$-amyl (compound 6), then diminishes through $n$-octyl and disappears with $n$-decyl. Compared to the active $n$-alkyl structures, branched or cyclic structures reflect a diminished response. The oxygen isostere of $n$-amylbiguanide, $\beta$-methoxypropylbiguanide (see Experimental), was inactive. The most desirable variant of $\mathrm{R}_{2}$ was hydrogen, although some structures having $R_{2}$ as methyl, and the $\mathrm{N}^{1}, \mathrm{~N}^{1}$-polymethylenebiguanides (compounds 90, 92) were effective. The data indicate a dependence on the molecular bulk of $R_{1}$ plus $\mathrm{R}_{2}$.

In the aralkyl series good activity was noted with $\mathrm{R}_{1}=$ benzyl and peak effects were obtained with $\beta$-phenethyl (compound 61 (DBI)). ${ }^{2}$. Lengthening or substitution on the alkylene chain diminished or abolished activity. The phenyl ring of the aralkyl could be substituted by pyridine, thiophene or furan rings with retention of activity, while use of a larger aryl moiety, $\beta$-naphthyl (compound 59), was ineffective. In active aralkyl compounds, substitution on the phenyl ring with halogen or alkoxy yielded active structures without enhancing the hypoglycemic effect. In turn,
(15) Not all of the compounds were tested by the same route of administration although sufficient data are at hand to characterize structure-activity relationships. Many more compounds would undoubtedly show activity if evalunted at higher levels,
methyl substituents on the ring and substitution of $\mathrm{R}_{2}$ as alkyl diminished the activity (however, see compound 97 ). The few ( $\beta$-phenoxyethyl)-biguanide structures evaluated proved to be inactive (compounds 67,68).

The tetrahydroisoquinoline derivative II (compound 154) which embodies the structural elements of the active compounds 61, 90 and 97 , was relatively ineffective.


The data suggest that hypoglycemic activity is associated with selected biguanides in the form of an intramolecular hydrogen-bonded cation ${ }^{2}$ (III).

$\mathrm{R}_{1}=\mathrm{C}_{4}-\mathrm{C}_{5}$ alkyl
$\operatorname{Ar}\left(\mathrm{CH}_{2}\right)_{\text {w }}$ where
$\operatorname{Ar}\left(\mathrm{CH}_{2}\right)_{n}$ where $n=1,2$
Ar $=$ phenyl, furyl, thieny pyridyl, chlorophenyl methoxyphenyl

$$
\mathrm{R}_{2}=\mathrm{H}, \mathrm{CH}_{3}
$$

## Experimental ${ }^{16}$

Materials.-Many of the amines used in this work were obtained from commercial sources. The preparation of certain of the amines has been detailed elsewhere ${ }^{11}$ while the following amines were processed as described in the literature: $\quad \beta$-( 2 -furyl)-ethylamine, ${ }^{17} \quad \mathrm{~N}$-methyl- $\beta$-phenethylamine, ${ }^{18} 2$-thenylamine. ${ }^{19}$ The remainder of the amines were prepared by either of three general procedures: Procedure A.-Reduction of amides (Table II) with lithium aluminum hydride ${ }^{20}$ (Table III). Procedure B.-Reduction of nitriles with lithium aluminum hydride-aluminum chloride (Table IV). Procedure C.-Reaction of aralkyl halides with amines (Table V).
Some typical examples are given wherein the experinental details warrant some comment.
$m$-Methylbenzylamine (Compound 2, Table IV).-To a stirred suspension of 11.4 g . ( 0.3 mole) of lithium aluminum hydride in 300 ml . of ether was added dropwise over a 2 -hour period 47.0 g . ( 0.35 mole) of aluminum chloride in 350 ml . of ether. A solution of 35.0 g . ( 0.3 mole ) of $m$-toluonitrile in 600 ml . of ether was then added over 1.5 hours. Stirring was continued for 0.5 hours followed by the cautious addition of 60 ml . of water and 19.8 ml . of $40 \%$ sodium hydroxide.
The gray granular precipitate which formed was separated and rinsed with 200 ml . of ether. Under tliese conditions of neutralization, the formed amine was still bound in the precipitate as a lithio-aluminum complex. ${ }^{21}$ The separated precipitate was suspended in 230 ml . of saturated sodium chloride, and 105 ml . of $40 \%$ sodium hydroxide was added. The gelatinous mass which formed was extracted with five successive $150-1111$. portions of ether, the ether extracts combined and dried (calciunı sulfate). After filtration, the ether solution of the amine was saturated with dried hydrogen chloride, there being obtained 41.8 g . of the hydrochloride.

N-n-Propyl-2,4-dichlorobenzylamine (Compounds 43, 44, 45, Table V).-In this procedure and in the other compounds described in Table V, some tertiary amine was formed in each instance. While the tertiary amines thus
(16) Descriptive data shown in the tables are not reproduced in the Experimental section.
(17) W. C. McCarthy and R. J. Kahl, J. Org. Chemı, 21, 1118 (1956).
(18) H. Decker and P. Becker, Ber. 45, 2408 (1913).
(19) H, D. Hartough, S. J. Lukasiewicz and E. H. Murray, Jr., This Journal, 70, 1146 (1948)
(20) W. G. Brown, ''Organic Reactions,' Vol. VI, John Wiley and Sons, Inc., New York, N. Y., 1951, p. 469
(21) D. D. Eley and H. Watts, J. Chein. Soc., 1319 (1934).

|  |  |  | Table II |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| No. | $\mathrm{R}_{1}$ | R : | M.p., ${ }^{\circ} \mathrm{C} .{ }^{a, b}$ | Yield, $\%$ | Formula | Calcd, | $\stackrel{\%}{\%}$ |
| 1 | $\mathrm{C}_{8} \mathrm{H}_{5}-$ | $n-\mathrm{C}_{4} \mathrm{H}_{9}-$ | aa | 94 | $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}$ | 7.9 | 8.3 |
| 2 | $2-\mathrm{ClC}_{6} \mathrm{H}_{4}{ }^{-}$ | HI | 139-141 | 81 | $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{ClNO}$ | 9.0 | 9.0 |
| 3 | $2-\mathrm{ClC}_{6} \mathrm{H}_{4}-$ | $\mathrm{CH}_{3}-$ | $119-120^{6 i}$ | 97 | $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}$ | 8.3 | 8.0 |
| 4 | $2-\mathrm{ClC}_{6} \mathrm{H}_{4}-$ | $n-\mathrm{C}_{3} \mathrm{H}_{-}$ | $75-77^{6 j}$ | 81 | $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}$ | 7.1 | 6.9 |
| 5 | $2-\mathrm{ClC}_{6} \mathrm{H}_{4}-$ | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$ | $63-67^{\text {bm }}$ | 66 | $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClNO}$ | 7.2 | 6.9 |
| 6 | $2-\mathrm{ClC}_{6} \mathrm{H}_{4}{ }^{-}$ | $n-\mathrm{C}_{4} \mathrm{H}_{8}-$ | $69-71^{\text {bj }}$ | 95 | $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}$ | 6.6 | 7.0 |
| 7 | $4-\mathrm{ClC}_{6} \mathrm{H}_{4}{ }^{-}$ | $\mathrm{CH}_{3}-$ | 158-159 ${ }^{\text {bk }}$ | 97 | $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClNO}$ | 8.3 | 8.2 |
| 8 | $4-\mathrm{ClC}_{6} \mathrm{H}_{4}-$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | 133-134 ${ }^{\text {bk }}$ | 98 | $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}$ | 5.4 | 5.0 |
| 9 | $4-\mathrm{ClC}_{6} \mathrm{H}_{4}-$ | $\begin{aligned} & 3,4-\mathrm{diCH}_{3} \mathrm{O}- \\ & \mathrm{C}_{6} \mathrm{I}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}- \end{aligned}$ | $129-131^{\text {bk }}$ | 100 | $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClNO}_{3}$ | ab |  |
| 10 | $3-\mathrm{BrC}_{6} \mathrm{H}_{4}-$ | H | $153-155^{\text {bj }}$ | 100 | $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BrNO}$ | 7.0 | 7.2 |
| 11 | $3-\mathrm{BrC}_{6} \mathrm{H}_{4}-$ | $\mathrm{CH}_{3}-$ | 93-94 ${ }^{\text {hj }}$ | 100 | $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}$ | 6.5 | 6.7 |
| 12 | $3-\mathrm{BrC}_{8} \mathrm{H}_{4}-$ | $\mathrm{C}_{3} \mathrm{H}_{6}-$ | $81-82^{3}$ | 98 | $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrNO}$ | 6.1 | 5.9 |
| 13 | $3,4-\mathrm{diClC}_{6} \mathrm{H}_{3}$ | H | $140-142^{\text {bt }}$ | 50 | $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{NO}$ | 7.4 | 7.0 |
| 14 | $3,4-\mathrm{diClC}_{8} \mathrm{H}_{3}$ | $\mathrm{CH}_{3}-$ | $131-132^{\text {bk }}$ | 50 | $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N} \mathrm{O}$ | 6.9 | 6.9 |
| 15 | $4-\mathrm{FC}_{6} \mathrm{H}_{4}-$ | H | 148-152 ${ }^{\text {bet }}$ | 55 | $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{FNO}$ | 10.1 | 9.8 |
| 16 | $2-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4}-$ | H | 132-134 ${ }^{\text {bi }}$ | 75 | $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$ | 8.5 | 8.1 |
| 17 | 2 - $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4}{ }^{-}$ | $\mathrm{CH}_{3}-$ | 53-55 ${ }^{\text {b }}$ | 62 | $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$ | 7.8 | 7.9 |
| 18 | $4-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4}{ }^{-}$ | H | 202-204 ${ }^{\text {bb }}$ | 100 | $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$ | 8.5 | 8.3 |
| 19 | $4-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4}{ }^{-}$ | $\mathrm{CH}_{3}{ }^{-}$ | $142-144^{\text {bb }}$ | 94 | $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}$ | 7.8 | 7.9 |
| 20 | Tlip- ${ }^{\text {n }}$ | $\mathrm{CH}_{3}-$ | $110-112^{\text {bj }}$ | 95 | $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NOS}$ | 9.9 | 10.0 |
| 21 | Thp- ${ }^{\text {n }}$ | $\mathrm{C}_{2} \mathrm{H}_{6}$ | $75-77^{6 i}$ | 76 | $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NOS}$ | 9.0 | 8.9 |
| 22 | $4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{-}$ | $\mathrm{CH}_{3}-$ | $114-116^{\text {bi }}$ | 89 | $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}$ | 7.6 | 8.0 |
| 23 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | H | $98-99^{h k}$ | 80 | $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$ | 9.4 | 9.1 |
| 24 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{8} \mathrm{CH}_{2}{ }^{-}$ | $n-\mathrm{C}_{4} \mathrm{H}_{9}-$ | ac | 80 | $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}$ | 6.8 | 6.8 |
| 25 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2}-$ | H | 102-104 ${ }^{\text {bi }}$ | 89 | $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$ | 9.3 | 9.0 |
| 26 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2}-$ | $\mathrm{CH}_{3}{ }^{-}$ | $69-70^{\text {b }}$ | 65 | $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}$ | 8.5 | 8.1 |
| 27 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCHCH}{ }_{3}$ | H | $128-130^{3 j}$ | 84 | $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$ | 8.5 | 8.3 |
| 28 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCHCH}_{3}-$ | $\mathrm{CH}_{3}-$ | 91-92 ${ }^{\text {i }}$ | 82 | $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$ | 7.8 | 7.9 |
| 29 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCHCH}_{3}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}$ | $69-70^{5 i}$ | 80 | $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$ | 7.3 | 7.0 |

The footnotes in this table have the same significance as those shown in Table I. aa Boiling point $125-137^{\circ}$ ( 0.1 mm .). ${ }^{a b}$ Calcd.: C, 63.9; H, 5.7. Found: C, 64.0; H, $\overline{0} .7$. ${ }^{a c}$ Boiling point $145-157^{\circ}$ ( 0.5 mm .).
obtained were not germane to the study at hand, their formation and properties have been included in the table as an indication of the scope ${ }^{22}$ of this type of synthesis in the preparation of amines and to indicate the influence of structural effects ${ }^{23}$ on the ratio of sec:tert-amine formed.

A mixture of 29.5 g . ( 0.3 mole ) of $n$-propylamine, 70 ml of water, 30 ml . of $40 \%$ sodium hydroxide and 50 ml . of acetonitrile was treated witlı a solution of 58.5 g . ( 0.3 mole) of 2,4 -dichlorobenzyl chloride in 40 ml . of acetonitrile. The reaction mixture was securely stoppered, and after 10 minutes, a mild exothermic reaction was noted. After standing for 4 days, a liter of water was added, and 61.0 g . of a colorless oil which separated was removed, dissolved in 100 ml . of ether and dried (sodium sulfate). No appreciable increase in yield was effected by extraction of the aqueous phase of the reaction mixture with additional ether.

After filtration of the ether solution of the products, removal of ether, and distillation, there was obtained 46.2 g . of the secondary amine (compound 43 , Table $V$ ), b.p. $82-$ $85^{\circ}(0.35-0.5 \mathrm{~mm}$.$) , and 7.7 \mathrm{~g}$. of the di-(2,4-dichloroben-zyl)-propylamine (compound 45, Table V), b.p. 161-175 0.05 mm .)

Treatment of a solution of 45.8 g . of compound 43 in 1.2 liters of ether with liydrogen chloride yielded 49.2 g . of the hydrochloride (compound 44, Table V) of N-n-propyl 2,4-dichlorobenzylamine.

Preparation of Biguanides.-Representative examples of the synthesis for structural variants of the compounds in Table I are given below.

[^2]$\mathrm{N}^{1}, \mathrm{~N}^{1}$-Hexamethylenebiguanide Hydrochloride (Compound 92, Table I).-An equimolar mixture of hexametliyleneimine hydrochloride and dicyandiamide ( 0.15 mole) was slowly heated with stirring (oil-bath). The mixture began to melt at $97^{\circ}$ (bath, $127^{\circ}$ ) and fused completely at $120^{\circ}$ (bath, $132^{\circ}$ ). The bath temperature was raised gradually over a 1 -hour period to $170^{\circ}$ and heating was continued at this temperature for 50 minutes. When cool, the product was dissolved in 130 ml . of ethanol and filtered (carbon). The filtrate, after addition of 300 ml . of ether, yielded 18.9 g. $(57 \%)$ of product.
$m$-Bromobenzylbiguanide Nitrate (Compound 48, Table I). -An equimolar mixture of $m$-bromobenzylamine liydrochloride and dicyandiamide ( 0.05 mole) was heated as above. The mixture began to melt at $125^{\circ}$ (bath, $139^{\circ}$ ) and fused completely at $153^{\circ}$. Heating was continued (bath, $150-160^{\circ}$ ) for $l$ hour. The cooled fusion product was dissolved in 250 ml . of water and filtered (carbon). After removal of 200 ml . of water at 18 mm ., the aqueous solution of the reaction product was treated with a solution of 5.0 g . of sodium nitrate in 5 ml . of water, and after chilling at $5^{\circ}$, 14.9 g . of product separated and was recrystallized from acetonitrile. There was obtained 8.8 g . ( $50 \%$ ).
$\mathrm{N}^{1}$-(3,4-Dichlorobenzyl)- $\mathrm{N}^{1}$-ethylbiguanide Hydrochloride (Compound 126, Table I).-An equimolar mixture of N-ethyl-3,4-dichlorobenzylamine hydrochloride (compound 53, Table V) and dicyandiamide ( 0.1 ninole) was heated as above. The mixture began to melt at $142^{\circ}$ (bath, $156^{\circ}$ ). Heating was continued with gradual raising of bath temperature to $167^{\circ}$ over a 1 -hour period. The cooled fusion product was recrystallized from ethanol giving 20.4 g (64\%).
p-Methoxybenzylbiguanide (Compound 49, Table I).An equimolar mixture of $p$-methoxybenzylamine hydro-

Table III
Amines by Lithium Aluminum Hydride Reduction of Amides $\mathrm{R}_{1}-\mathrm{N}-\mathrm{H} \cdot \mathrm{HCl}$

| No. | $\mathrm{R}_{1}$ | R2 | M.p., ${ }^{\circ} \mathrm{C} .{ }^{a, b}$ | Yield, \% | Formula | Nitrogen, Calcd. | $\begin{aligned} & \%-\sigma_{1} \\ & \text { Found } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2}-$ | H | 288-289 | 45 | $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{ClN}$ | 11.3 | 11.2 |
| 2 | $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}_{2}-$ | H | 314 dec. | 62 | $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{ClN}$ | 10.2 | 10.0 |
| 3 | $\mathrm{CH}_{3} \mathrm{CHCH}_{3}\left(\mathrm{CH}_{2}\right)_{3}-$ | H | 186-188 ${ }^{\text {bk }}$ | 54 | $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{ClN}$ | 10.2 | 9.7 |
| 4 | $2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | H | 216-218 ${ }^{\text {bb }}$ | 59 | $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}$ | 7.9 | 8.3 |
| 5 | $2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $n-\mathrm{C}_{4} \mathrm{H}_{9}-$ | 107-115 ${ }^{6 k}$ | 50 | $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}$ | 6.0 | 5.7 |
| 6 | $4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | $>260^{\text {bb }}$ | 92 | $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}$ | 5.0 | 4.7 |
| $7^{\text {ca }}$ | 4- $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\begin{aligned} & 3,4-\mathrm{diCH}_{3} \mathrm{O}- \\ & \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{6} \mathrm{CH}_{2}- \end{aligned}$ | $139-141^{\text {ba }}$ |  | $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{8}$ | cb |  |
| 8 | $3-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | H | 212-214 ${ }^{\text {be }}$ | 74 | $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{BrClN}$ | 6.3 | 5.7 |
| 9 | $3-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{3}-$ | 159-160 ${ }^{\text {be }}$ | 93 | $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{BrClN}$ | 5.9 | 5.8 |
| 10 | $3-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | $171-172^{\text {be }}$ | 100 | $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{BrClN}$ | 5.6 | 6.0 |
| 11 | $3,4-\mathrm{diClC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$ | H | $230-234{ }^{\text {bb }}$ | 29 |  |  |  |
| $12^{\text {ca }}$ | $3,4-\mathrm{diClC}_{8} \mathrm{H}_{3} \mathrm{CH}_{2}-$ | H | 214-215 ${ }^{\text {be }}$ |  | $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$ | 13.8 | 14.0 |
| 13 | 3,4- $\mathrm{diClC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{3}-$ | $225-227^{6 b}$ | 44 | $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Cl}_{5} \mathrm{~N}$ | 6.2 | 6.1 |
| 14 | $2-\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | H | 165-16 ${ }^{\text {b }}$ | 64 | $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ClNO}$ | 7.5 | 7.1 |
| 15 | $2-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{3}-$ | 125-138 | 97 | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClNO}$ | 7.0 | 7.1 |
| 16 | $4-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | H | 231-233 ${ }^{\text {ba }}$ | 68 | $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ClNO}$ | 7.5 | 7.1 |
| 17 | 4- $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{3}-$ | 162-163 ${ }^{\text {be }}$ | 97 | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClNO}$ | 7.0 | 6.9 |
| 18 | FurCH2- | $\mathrm{CH}_{8}$ | $145-147^{6 l}$ | 52 | $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{ClNO}$ | 9.5 | 9.2 |
| 19 | FurCH2- | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | $120-122^{\text {bl }}$ | 52 | $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{ClNO}$ | 8.7 | 8.8 |
| 20 | ThpCH ${ }^{-}$ | $\mathrm{CH}_{3}{ }^{-}$ | $190-192^{\text {bb }}$ | 77 | $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{ClNS}$ | 8.6 | 8.8 |
| 21 | ThpCH2- | $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$ | $137-138^{\text {be }}$ | 74 | $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{ClNS}$ | 7.9 | 8.2 |
| 22 | 4- $\mathrm{ClC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2}-$ | $\mathrm{CH}_{3}-$ | 147-154 ${ }^{\text {be }}$ | 78 | $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}$ | 6.8 | 7.0 |
| 23 | $\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{5}$ | H | $218-220^{\text {be }}$ | 65 | $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ClN}$ | 8.2 | 7.8 |
| 24 | $\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{3}-$ | $n-\mathrm{C}_{4} \mathrm{H}_{9}-$ | 218-219 ${ }^{\text {be }}$ | 85 | $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{ClN}$ | 6.2 | 5.9 |
| 25 | $\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{4}-$ | H | 164-165 ${ }^{\text {be }}$ | 67 | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}$ | 7.5 | 7.8 |
| 26 | $\alpha-\mathrm{NpCH}_{2}{ }^{\circ}$ | H | 249-250 ${ }^{\text {be }}$ | 37 | $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClN}$ | $7.2{ }^{\text {ce }}$ | 6.8 |
| 27 | $\beta-\mathrm{NpCH}_{2-}{ }^{\circ}$ | H | 266-268 ${ }^{\text {bb }}$ | 73 | $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClN}$ | 7.2 | 6.8 |
| 28 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{CH}_{2}{ }^{-}$ | H | $214-216^{\text {bb }}$ | 58 | $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{ClNO}$ | 8.1 | 8.1 |
| 29 | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{OCH} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{3}{ }^{-}$ | $175-176^{\text {be }}$ | 79 | $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ClNO}$ | 7.5 | 7.0 |
| 30 | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{OCH}_{2} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | $178-180^{\text {be }}$ | 85 | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClNO}$ | 7.0 | 6.8 |
| 31 | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{OCHCH}_{3} \mathrm{CH}_{2}-$ | H | $156-158^{\text {be }}$ | 66 | $\mathrm{C}_{3} \mathrm{H}_{14} \mathrm{ClNO}$ | 7.5 | 7.1 |
| 32 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCHCH}_{3} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{3}-$ | $116-117^{6 h}$ | 58 | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClNO}$ | 7.0 | 7.0 |

The footnotes in this table have the same significance as those shown in Table I. ca Picrate of the compound shown. ${ }^{c b}$ Calcd.: C, 51.6 ; H, 4.4. Found: C, 51.8 ; H, 4.3. ${ }^{c c}$ Calcd.: C, 68.2; H, 6.3. Found: C, 68.3; H, 6.3 .

## Table IV

| Amines by $\mathrm{AlCl}_{3}-\mathrm{LiAlH}_{4}$ Reduction of Nitriles |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | $\mathrm{R}_{1}$ | ${ }^{{ }^{\circ} \mathrm{C} \cdot \mathrm{p} \cdot \mathrm{p},{ }^{2}, b}$ | Yield, \% | Formula |  | $\begin{aligned} & \text { a, } \% \\ & \text { ound } \end{aligned}$ |
| 1 | $2 \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | 222-223 ${ }^{\text {b }}$ | 83 | $\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{ClN}$ |  |  |
| 2 | $3-\mathrm{CH}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{-}$ | 214-215 ${ }^{\text {ba }}$ | 89 | $\mathrm{C}_{3} \mathrm{H}_{1} \mathrm{ClN}$ | 8.9 | 8.8 |
| 3 | $4-\mathrm{CH}_{4} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{4}-$ | 220-224 ${ }^{\text {aa }}$ | 90 | $\mathrm{CbH}_{12} \mathrm{ClN}$ | 8.9 | 8.8 |
| 4 | $\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{CH}_{2}\right)_{4}-$ | 161-163 ${ }^{\text {bs }}$ | 79 | $\mathrm{C}_{3} \mathrm{H}_{14} \mathrm{ClN}$ | 8.2 | 7.7 |
|  | $\alpha-\mathrm{NpCH}_{2} \mathrm{CH}_{2}{ }^{-}{ }^{\circ}$ | $249-250^{\text {bb }}$ | 74 | $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}$ | 6.7 | 6.9 |

The footnotes in this table have the same significance as those shown in Table I. ${ }^{d a}$ Calcd.: C, 61.0; H, 7.7. Found: C, 60.7; H, 7.4.
chloride and dicyandiamide ( 0.1 mole) was heated as above. The mixture began to melt at $143^{\circ}$ (bath, $158^{\circ}$ ) and fused completely at $167^{\circ}$ with a rise of mixture temperature to $170^{\circ}$ (bath, $164^{\circ}$ ). Heating (bath, $164-169^{\circ}$ ) was maintained for 1.3 hours. The cooled fusion product was dissolved in 200 ml . of water, treated with carbon and filtered. The filtrate was concentrated to 125 ml . under vacuum ( 18 mm .), cooled and 10 ml . of $40 \%$ sodium hydroxide was added with continued stirring and cooling. After storage at $5^{\circ}$ for 20 hours, 10.8 g . of product separated and was recrystallized from acetonitrile. There was obtained 5.7 g . (26\%).
$\mathrm{N}^{1}$-(3-Methoxypropyl)-biguanide Hydrochloride.-Equimolar portions ( 0.1 mole) of 3 -methoxypropylamine hydrochloride and dicyandiamide were fused as previously described. The mixture softened at $78^{\circ}$ (bath, $120^{\circ}$ ) and fused completely at $122^{\circ}$. Within 15 minutes of complete
fusion, an exothermic reaction occurred and the internal temperature rose to $142^{\circ}$ (bath, $136^{\circ}$ ). The reaction mixture was maintained at $142^{\circ}$ for 1 hour, cooled and dissolved in 140 ml . of ethanol. After addition of carbon, the solution was filtered and the filtrate treated with 140 ml . of of hexane. There was obtained 11.5 g . ( $55 \%$ ) of product, m.p. $155-157^{\circ}$.

Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{ClN}_{5} \mathrm{O}: \mathrm{C}, 34.4 ; \mathrm{H}, 7.7 ; \mathrm{N}$, 33.4. Found: C, 34.2; H, 8.1; N, 33.1.
$\mathrm{N}^{1}$-(2-Picolyl)-biguanide Hydrochloride.-A solution of 10.8 g . ( 0.1 mole ) of 2 -picolylamine in 34.3 ml . of 3 N hydrochloric acid was evaporated to dryness and the residue dried and slurried with ether. There was obtained 14.3 g . of the monohydrochloride of 2-picolylamine, m.p. 121$124^{\circ}$.
A mixture of 13.3 g. ( 0.09 mole ) of the hydrochloride and 8.4 g . ( 0.1 mole ) of dicyandiamide was fused in an oil-bath. The mixture began to melt at $67^{\circ}$ (bath, $105^{\circ}$ ) and fused completely at $126^{\circ}$ (bath, $132^{\circ}$ ). After 5 minutes, an exothermic reaction occurred, the temperature rose to $143^{\circ}$ (bath, $141^{\circ}$ ) and the reaction mixture darkened considerably. Heating was discontinued. When the cooled reaction product was dissolved in 90 ml . of ethanol, and 85 ml . of hexane was added, an oil precipitated. The supernatant was decanted and on standing gave 2.2 g . of product, m.p. $134-142^{\circ}$. After resolution in ethanol and precipitation with hexane, the oil gave an additional 3.64 g ., m.p. $130-$ $132^{\circ}$. Recrystallization (isopropyl alcohol-hexane) gave the product in $10 \%$ yield, m.p. 177-178 ${ }^{\circ}$. The compound had an $L D_{\text {rin }}$ of $500 \mathrm{mg} . / \mathrm{kg}$. and showed $4+$ hypoglycemia (s.c.).

Table V


| Table V (continued) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | $\mathrm{R}_{1}{ }^{\epsilon b} \mathrm{HCl} \mathrm{R}^{\text {ej }}$ |  | R s | ${ }^{\circ} \mathrm{C} .{ }^{\text {M.p. or b.p. },{ }^{a, b}}{ }_{\mathrm{Mm} .}$ |  | Yield. \% | Formula$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{8} \mathrm{~N}$ | $\begin{aligned} & \text { Nitrogen, } \% \\ & \text { Calcd. } \quad \text { Found } \end{aligned}$ |  |
| 62 |  |  | $222-224{ }^{\text {bb }}$ |  | ${ }^{6}$ |  |  |  |
| 63 | 3,4- $\mathrm{diClC}_{6} \mathrm{H}_{3} \mathrm{CH}$ | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$ |  | $\mathrm{R}_{1}$ | 86-167 | 0.25-0.33 | 24 | $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{4} \mathrm{~N}$ | 3.7 | 3.9 |
| 64 | $4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | H | 108-111 | 6.0 | $27^{6 a}$ | $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{BrN}$ | 6.5 | 6.7 |
| 65 |  |  |  | 238-240 ${ }^{36}$ |  |  | $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{BrClN}$ | 5.6 | 5.8 |
| 66 |  |  |  | 238-241 ${ }^{\text {be }}$ |  |  |  |  |  |
| 67 | $4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$ - | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | $\mathrm{R}_{1}$ | Res. ${ }^{\text {cc }}$ |  | $4^{e a}$ |  |  |  |
| 68 | $4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $i-\mathrm{C}_{3} \mathrm{H}_{7}-$ | H | 80-84 | 0.65-0.8 | 66 | $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{BrN}$ | 6.1 | 6.4 |
| 69 |  |  |  | 190-191 |  |  | $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BrClN}$ | 5.3 | 4.9 |
| 70 | 4- $\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $i-\mathrm{C}_{3} \mathrm{H}_{5}$ | $\mathrm{R}_{1}$ | Res. ${ }^{\text {Ec }}$ |  | 19 |  |  |  |
| 71 | $4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$ | H | 82-89 | 0.06 | 44 | $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrN}$ | 6.2 | 6.4 |
| 72 |  |  |  | $194-196{ }^{\text {be }}$ |  |  | $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrClN}$ | 5.3 | 4.9 |
| 73 | 4- $\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ | $n-\mathrm{C}_{4} \mathrm{H}_{9}-$ | H | 84-94 | 0.08 | 57 |  |  |  |
| 74 |  |  |  | 233-235 ${ }^{\text {be }}$ |  |  | $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BrClN}$ | 5.0 | 4.8 |
| 75 | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{5}-$ | H | 50-75 | 2.8 | 43 |  |  |  |
| 76 |  |  |  | $182-184^{\text {be }}$ |  |  |  |  |  |
| 77 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | $\mathrm{C}_{2} \mathrm{H}_{6}-$ | $\mathrm{R}_{1}$ | 115-130 | 0.15-0.25 | 38 | $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}$ | 5.5 | 5.9 |
| 78 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | $n-\mathrm{C}_{3} \mathrm{H}_{7}$ | H | 78-87 | 3.0-3.5 | 63 | $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}$ | 8.6 | 8.7 |
| 79 |  |  |  | 215-216 ${ }^{\text {be }}$ |  |  | $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN}$ | 7.0 | 7.3 |
| 80 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | $n-\mathrm{C}_{3} \mathrm{H}_{7}$ | $\mathrm{R}_{1}$ | 90-119 | 0.1-0.12 | 21 | $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}$ | 5.2 | 4.8 |
| 81 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{-}$ | $i-\mathrm{C}_{3} \mathrm{H}_{7}$ | H | 76-78 | 3.5-4.0 | 79 |  |  |  |
| 82 |  |  |  | $168-169^{\text {be }}$ |  |  | $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN}$ | 7.0 | 6.8 |
| 83 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{3}$ | $i-\mathrm{C}_{3} \mathrm{H}_{7}$ | $\mathrm{R}_{1}$ | 126-134 | 0.3-0.4 | 15 | $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}$ | 5.2 | 5.3 |
| 84 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$ | H | 85-92 | 4.0 | 58 | $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}$ | 8.7 | 8.8 |
| 85 |  |  |  | $175-176^{\text {be }}$ |  |  | $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{ClN}$ | 7.1 | 7.3 |
| 86 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$ | $\mathrm{R}_{1}$ | 105-130 | 0.4-0.7 | 24 | $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}$ | 5.3 | 4.8 |

The footnotes in this table have the same significance as those shown in Table I. ${ }^{e a}$ The aralkyl halide used was the bromide. In other instances the aralkyl chloride was used. ${ }^{\text {ob }} \mathrm{HCl}$ where shown indicates the hydrochloride of the compound immediately above. ec Res. = residue which was not distilled. ed Calcd.: $\mathrm{Cl}, 42.1$. Found: Cl, 42.0. ee Calcd.: Cl, 42.1. Found: $\mathrm{Cl}, 42.1$. of A consideration of the utility of this method indicates that improved yields of the desired secondary amines are obtained as the steric hindrance in the amine (i.e., isopropylamine) and aralkyl halide (i.e., o-chloro groups on the benzene ring) is increased. The phenethyl group as compared to the benzyl group gives more secondary amine when used as the alkylating agent. The data do not reflect any significant improvement when an aralkyl bromide is used as compared to an aralkyl chloride. The results obtained have been tabulated as percentage yield of amines (\% secondary amines / \% tertiary amines) as a function of initial reactants and are shown in Table Va.

Table Va

| \% Yields of sec-/tert-Amine as Function of Reactants |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Aralkyl halide | Ethyl | $\underset{\text { Propyl }}{\text { Amines }}$ |  | Allyl |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$ | 24/68 | 47/4 | 66/27 | 33/60 |
| $2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Cl}$ | 40/43 |  | 71/21 | 59/27 |
| $4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Cl}$ | 35/50 | 47/49 | 73/15 | 50/37 |
| 2,4-diClC6 $\mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ | 55/21 | 71/14 | 74/16 | 65/18 |
| $3,4-\mathrm{diClC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ | 49/35 | 65/23 | 85/7 | 63/24 |
| $4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}$ | 27/54 |  | 66/19 | 44/57 |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ | 43/38 | 63/21 | 79/15 | 58/24 |

Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{ClN}_{6}: \mathrm{C}, 42.0 ; \mathrm{H}, 5.7 ; \mathrm{N}, 36.8$. Found: C, 41.0; H, 5.6; N, 37.1.

The dipicrate melted at $210-214^{\circ}$ dec.
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{12} \mathrm{O}_{14}$ : N, 25.8. Found: N, 25.5.
$\mathrm{N}^{1}$-(3-Picolyl)-biguanide Hydrochloride. -In a manner similar to the procedure above, there was prepared $\mathrm{N}^{1}$-(3-picolyl)-biguanide hydrochloride, m.p. 168-171 ${ }^{\circ}$ (ethanolacetonitrile), in $20 \%$ yield.

Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{ClN}_{6}: \mathrm{C}, 42.0 ; \mathrm{H}, 5.7$. Found: C, $42.2 ; \mathrm{H}, 5.5$.
The dipicrate melted at $177-180^{\circ}$ (ethanol-hexane).
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{12} \mathrm{O}_{14}$ : C, $36.9 ; \mathrm{H}, 2.8 ; \mathrm{N}$, 25.8. Found: C, $37.0 ; \mathrm{H}, 3.2 ; \mathrm{N}, 25.6$.
$\mathrm{N}^{1}$-(2-[4-Pyridyl]-ethy1)-biguanide Sulfate.-Attempted fusions of the pyridylethylamines as their hydrochlorides with dicyandiamide did not prove to be a convenient procedure for the synthesis of the corresponding biguanides. For compounds of this type, the procedure of Slotta and Tschesche ${ }^{4}$ was more serviceable.

A mixture of 12.2 g . ( 0.1 mole) of 2 -( 4 -pyridyl)-ethylamine, 8.48 g . ( 0.1 mole ) of dicyandiamide and 12.5 g . ( 0.05 mole) of copper sulfate pentahydrate in 75 ml . of

| Table VI |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Guanidines $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{NCNH}_{2} \cdot \mathrm{HX}^{\prime a}$ |  |  |  |  |
|  |  |  |  |  |
| NH |  |  |  |  |
| $\mathrm{R}_{1}$ | HX | M.p...a, ${ }^{\text {c }}$, |  | ses ${ }^{c}$ <br> n, $\%$ |
| $\mathrm{C}_{8} \mathrm{H}_{15}{ }^{\text {fob }}$ | $\mathrm{HNO}_{3}$ | $173-174{ }^{\text {bd }}$ | 24.1 | 24.0 |
| $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11}{ }^{-}$ | $\mathrm{HNO}_{3}$ | $82-83^{\text {be }}$ | 19.3 | 18.8 |
| $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11}{ }^{-}$ | HPic. ${ }^{\text {d }}$ | $141-143^{\text {be }}$ | 18.4 | 18.5 |
| $\alpha-\mathrm{NpCH}_{2} \mathrm{CH}_{2}-^{\circ}$ | $\mathrm{HNO}_{3}$ | $172-173^{\text {ba }}$ | 20.3 | 20.6 |
| $i-\mathrm{C}_{6} \mathrm{H}_{11}{ }^{\text {- }}$ c | HCl | 111-114 ${ }^{\text {be }}$ | 23.4 | 23.6 |

The footnotes have the same significance as those shown in Table $I$. ${ }^{f a} \mathrm{R}_{2}=$ hydrogen unless otherwise shown. ${ }^{f b} \mathrm{C}_{8} \mathrm{H}_{15}-=$ cyclohexylethyl. fi $\mathrm{R}_{2}=$ methyl.
water was heated at $100^{\circ}$ for 10 hours. When cool, the brown-red precipitate ( 18.5 g .) which had formed was separated, suspended in 500 ml . of water and saturated with hydrogen sulfide. The formed cupric sulfide ( 8.8 g .) was separated and the filtrate evaporated to dryness. The residue obtained was boiled with 100 ml . of ethanol and the insoluble product, 2.35 g ., separated. Upon recrystallization (methanol-acetonitrile), there was obtained 1.22 g . ( $5 \%$ ) , m.p. 221-222 ${ }^{\circ}$, which the analysis indicated to be the dibasic sulfate monohydrate. The compound had an $\mathrm{LD}_{\mathrm{m}}$; of $750 \mathrm{mg} . / \mathrm{kg}$. and showed $4+$ hypoglycemia (s.c.).

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{12} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 40.8 ; \mathrm{H}, 6.0 ; \mathrm{N}, 31.8$. Found: C, 40.1; H, $5.0 ; \mathrm{N}, 31.7$.

The dipicrate melted at $199-200^{\circ}$ (water).
Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{10} \mathrm{~N}_{12} \mathrm{O}_{14}$ : C, 38.0; $\mathrm{H}, 3.1$. Found: C, $38.4 ; \mathrm{H}, 2.8$.
$\mathrm{N}^{1}$-(2-Cyclohexylethyl)-guanidine Nitrate.-The critical character of the fusion process is reflected in the isolation of guanidines, in some runs using virtually the same conditions which afforded the biguanides.

Equimolar portions ( 0.13 mole) of $\beta$-cyclohexylethylamine
hydrochloride and dicyandiamide were fused as shown. After softening at $108^{\circ}$ (bath, $148^{\circ}$ ), complete fusion occurred at $143^{\circ}$ (bath, $150^{\circ}$ ). The bath temperature was raised gradually to $182^{\circ}$ while heating was maintained for 1.25 hours. The cooled reaction product was dissolved in 225 ml . of water, carbon added and the reaction mixture filtered. Addition of 25.0 g . of sodium nitrate precipitated 25.2 g . of oily crystals which were separated and recrystallized from 250 ml . of water. There was obtained 11.6 g . $(38 \%)$ of the guanidine, nis.p. $164-167^{\circ}$; recrystallized
(isopropyl alcohol), m.p. 173-174 ${ }^{\circ}$.
The guanidines isolated in this study are shown in Table VI.

Acknowledgment.-The authors are indebted to Dr. G. Ungar and his staff for the data on the hypoglycemic activity of the compounds.

Yonkers 1, N. Y.
[Contribution from the Laboratory of Chemistry of Natural Products, National Heart Institute, Nationai, Institutes of Health and Varian Associates]

# Alkaloids of Lunasia amara Blanco. Hydroxylunacridine 

By Sidney Goodwin, J. N. Shoolery and E. C. Horning<br>Received December 1, 1958

Hydroxylunacridine has been slown to have the structure II.

One of the leaf alkaloids of Lunasia amara Blanco ${ }^{1}$ was found to have the empirical formula $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{~N}$ and to contain two methoxyl groups, one N-methyl group and two active hydrogen atoms. The ultraviolet absorption spectrum was identical with that of lunacridine (I), indicating that the aromatic system was that of a 3 -alkyl-4,8-dimethoxy-1-methyl-2-quinolone. The nuclear magnetic resonance spectrum confirmed this relationship; the signals of the aromatic hydrogen nuclei, and of the methoxyl and N-methyl hydrogen nuclei, were identical with those observed for lunacridine. In addition, the n.m.r. spectrum indicated that the side chain arrangement was $-\mathrm{CH}_{2} \mathrm{CHOHCOH}\left(\mathrm{CH}_{3}\right)_{2}$. The compound was therefore given the name hydroxylunacridine and considered to be II.


Periodic acid oxidation of hydroxylunacridine yielded acetone, isolated and identified as the 2,4dinitrophenylhydrazone, and a second carbonylcontaining cleavage product which was also isolated as a 2,4-dinitrophenylhydrazone. The analytical data for the latter compound corresponded to those for an aldehyde derivative of the expected structure III. When the periodic acid oxidation was followed by sodium borohydride reduction in situ, a crystalline compound, $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}$,
(1) The leaves and bark of Lunasia sp. contain a number of alkaloids not previously described or studied. A summary of the alkaloids isolated from $L$. amara leaves, including hydroxylunacridine, is in preparation. References to earlier work, and a review of current knowledge relating to the "water-soluble" quaternary Lumasia bases, the major alkaloid lunacrine, and the related compound lunacridine, are included in a summary by J. R. Price. ${ }^{2}$ Structures have been proposed forlunacrine and lunacridine. ${ }^{3,4}$
(2) J. R. Price, ''Recent Advances in Heterocyclic Chemistry,' Academic Press, Inc., New York, N. Y., 1958, p. 92.
(3) S. Goodwin and E. C. Horning, This Journal, 81, 1908 (1959).
(4) S. Goodwin, J. ㄷ. Shoolery and L. F. Johnson, ibid., 81, 3065 (19;9).
m.p. $120-121.5^{\circ}$, was isolated and was presumed to be the alcohol IV.


This alcohol, a key compound in the structure determination of the alkaloid, may be prepared from $\gamma$-fagarine by a sequence of reactions suggested by Lunasia chemistry; specifically the dihydrofurano ring opening reaction analogous to the observed conversion of the methyl lunacrinium ion to lunacridine. ${ }^{2}$ The requisite dihydro- $\gamma$ fagarine (V) may be obtained either by the Grun-don-McCorkindale synthesis ${ }^{5}$ or from the catalytic reduction of $\gamma$-fagarine. The natural material was used here to prepare $V$ which in turn was converted to the methiodide VI. Treatment of the methiodide with dilute sodium hydroxide solution yielded the alcohol IV, m.p. $120-121^{\circ}$, which proved to be identical with the compound isolated

from the degradation of hydroxylunacridine. In addition to the usual comparison, IV from $\gamma$ fagarine was converted to the aldehyde 2,4dinitrophenylhydrazone which was identical with the product obtained through the periodic acid oxidation of hydroxylunacridine.
Nuclear Magnetic Resonance Spectrum. ${ }^{6}$-A1though the n.m.r. spectrum was used to predict the structure of the side chain of hydroxylunacridine, it
(5) M. F. Grundon and N. J. McCorkindale, J. Chem. Soc., 2177 (1957).
(6) The resonance frequencies are given relative to benzene at 60 mc . and the solvent was deuterio-chloroform. The equipment and operating conditions were the same as those described for lunacrine and lunine. ${ }^{4}$


[^0]:    (17) The melting point of $m$-chloroaniline picrate is reported as $177^{\circ}$ by E. Hertel, Ber., 57B, 1559 (1924); C. A., 19, 258 (1925).

[^1]:    (10) S. L. Shapiro, V. A. Parrino and L. Freedman, J. Am. Pharm. Assoc., Sci. Ed., 46, 689 (1957).
    (11) S. L. Shapiro, V. A. Parrino, K. Geiger, S. Kobrin and I. Freedman, This Journal, 79, 5064 (1957).
    (12) P. Oxley and W. F., Short, J. Chem. Soc., 1252 (1951).
    (13) J. C. Gage, I. Chem. Soc., 221 (1949).
    (14) G. W. Wheland, 'Resonance in Organic Chemistry',' John Wiley and Sons, Inc., New York, N. Y., 1955, p. 355.

[^2]:    (22) C. G. Swain and D. C. Ditmer, This Journal, 77, 3924 (1955).
    (23) (a) J. C. Charlton and F. D. Huphes, J. Chem. Soc., 850,85 (1956); (b) G. Baddeley, J. Chadwick and H. T. Taylor, ibid, 448 (1956).

